The Trick that Makes Physics as Simple as Drawing a Picture

Problem Sheet

If you notice any errors in this file, please let me know at feedback@PhysicsWithElliot.com.

Solutions available at PhysicsWithElliot.com/potential-help-room

Sally the spider is walking along her merry way when she is suddenly caught in a mysterious force field! The force is given by $F(x) = F_0 \sin(\kappa x)$, where F_0 and κ are constants, plotted below:

(a) Identify all the equilibrium points in the plotted potential. Which are stable and which are unstable?

(b) Find and draw the potential energy U(x). Hint: the slope of $\sin(\kappa x)$ is $\kappa \cos(\kappa x)$, and the slope of $\cos(\kappa x)$ is $-\kappa \sin(\kappa x)$.

Suppose Sally is at position $x_0 = \frac{\pi}{\kappa}$ and has velocity v_0 at t = 0. She bundles herself up into a little ball like spiders do when they're scared, and coasts along without friction.

(c) Write the F = ma equation for Sally's position x(t). Under what circumstances do you expect it to have a simple solution?

(d) Describe the behavior of Sally's trajectory x(t) by thinking about the shape of the potential. Be sure to distinguish the different cases, depending on how big v_0 is.

(e) What will be the maximum x coordinate that Sally reaches for t > 0?

(f) Suppose v_0 is small enough that Sally doesn't get very far away from $\kappa x = \pi$. Write the explicit solution of the F = ma equation in that case, using the fact that $\sin(\kappa x) \approx -(\kappa x - \pi)$. Is your solution consistent with what you expected from the shape of the potential?