The Trick that Makes Physics as Simple as Drawing a Picture

Problem Sheet

If you notice any errors in this file, please let me know at feedback@PhysicsWithElliot.com.
Solutions available at PhysicsWithElliot.com/potential-help-room

Sally the spider is walking along her merry way when she is suddenly caught in a mysterious force field! The force is given by $F(x)=F_{0} \sin (\kappa x)$, where F_{0} and κ are constants, plotted below:

(a) Identify all the equilibrium points in the plotted potential. Which are stable and which are unstable?
(b) Find and draw the potential energy $U(x)$. Hint: the slope of $\sin (\kappa x)$ is $\kappa \cos (\kappa x)$, and the slope of $\cos (\kappa x)$ is $-\kappa \sin (\kappa x)$.

Suppose Sally is at position $x_{0}=\frac{\pi}{\kappa}$ and has velocity v_{0} at $t=0$. She bundles herself up into a little ball like spiders do when they're scared, and coasts along without friction.
(c) Write the $F=m a$ equation for Sally's position $x(t)$. Under what circumstances do you expect it to have a simple solution?
(d) Describe the behavior of Sally's trajectory $x(t)$ by thinking about the shape of the potential. Be sure to distinguish the different cases, depending on how big v_{0} is.
(e) What will be the maximum x coordinate that Sally reaches for $t>0$?
(f) Suppose v_{0} is small enough that Sally doesn't get very far away from $\kappa x=\pi$. Write the explicit solution of the $F=m a$ equation in that case, using the fact that $\sin (\kappa x) \approx-(\kappa x-\pi)$. Is your solution consistent with what you expected from the shape of the potential?

