Everything You Need To Know About Pendulums

Problem Sheet
If you notice any errors in this file, please let me know at feedback@PhysicsWithElliot.com.

Solutions available at PhysicsWithElliot.com/pendulum-help-room

1

You give a pendulum, which was initially at rest in equilibrium, a tap to the left at $t=0$ that gives it initial speed v_{0}. Assuming that you tapped it gently enough that the pendulum doesn't swing too far away from equilibrium, determine $\theta(t)$ for $t>0$. How big can v_{0} be before you can't trust your solution anymore?

2

Determine the tension T in the rod of a simple pendulum as a function of θ and $\dot{\theta}$. Check that your answer is consistent with what you expect when the pendulum is at rest in equilibrium. Evaluate the tension as a function of time for a pendulum that's released from rest from a small initial angle θ_{0} at $t=0$.
Hint: Since the particle is moving around in a circle, the total force pointing toward the center has to supply the centripetal force $m \dot{\theta}^{2} l$ that's always required to keep a mass in circular motion.

The kinetic energy of an oscillating pendulum is $K(t)=\frac{1}{2} m \dot{s}^{2}=\frac{1}{2} m l^{2} \dot{\theta}^{2}$, and the potential energy is $U(t)=m g y$, where $y=-l \cos \theta$ is the height of the particle (where I've called the height of the pivot $y=0$). Show that the total energy $E=K(t)+U(t)$ is a constant, independent of time.

4

A pendulum is released from rest from an initial angle θ_{0}, which isn't necessarily a small number. Determine the maximum speed that the particle reaches. Check that your result is consistent with what you expect when θ_{0} is a small number. Hints: Use energy conservation! You'll also need the small angle approximation for $\operatorname{cosine}, \cos \theta \approx 1-\frac{1}{2} \theta^{2}$ when θ is small.

5 For a pendulum that's released from rest from a small angle θ_{0}, we saw that the period is $T=2 \pi / \Omega$, where $\Omega=\sqrt{g / l}$ is the natural frequency. Show that the exact period-not assuming θ_{0} is small-may be expressed as

$$
T=\frac{2 \sqrt{2}}{\Omega} \int_{0}^{\theta_{0}} \frac{\mathrm{~d} \theta}{\sqrt{\cos \theta-\cos \theta_{0}}}
$$

and show that this reduces to $2 \pi / \Omega$ when θ_{0} is small. The period for small angles was independent of θ_{0}; is the same true for large θ_{0} 's? Hints: Use energy conservation to solve for the angular velocity $\dot{\theta}$. Then use the identity $\frac{\mathrm{d} \theta}{\dot{\theta}}=\mathrm{d} t$ and integrate both sides over one full oscillation. The right-hand-side is the period, and the left-hand-side is what you're looking for.

