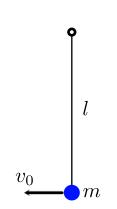
Everything You Need To Know About Pendulums

Problem Sheet

If you notice any errors in this file, please let me know at feedback@PhysicsWithElliot.com.

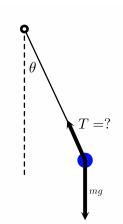
Solutions available at PhysicsWithElliot.com/pendulum-help-room



You give a pendulum, which was initially at rest in equilibrium, a tap to the left at t = 0 that gives it initial speed v_0 . Assuming that you tapped it gently enough that the pendulum doesn't swing too far away from equilibrium, determine $\theta(t)$ for t > 0. How big can v_0 be before you can't trust your solution anymore?

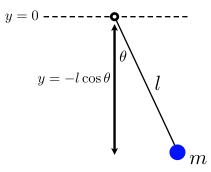
 $\mathbf{2}$

1



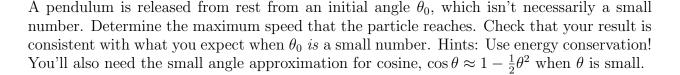
Determine the tension T in the rod of a simple pendulum as a function of θ and $\dot{\theta}$. Check that your answer is consistent with what you expect when the pendulum is at rest in equilibrium. Evaluate the tension as a function of time for a pendulum that's released from rest from a small initial angle θ_0 at t = 0.

Hint: Since the particle is moving around in a circle, the total force pointing toward the center has to supply the **centripetal** force $m\dot{\theta}^2 l$ that's always required to keep a mass in circular motion.



The kinetic energy of an oscillating pendulum is $K(t) = \frac{1}{2}m\dot{s}^2 = \frac{1}{2}ml^2\dot{\theta}^2$, and the potential energy is U(t) = mgy, where $y = -l\cos\theta$ is the height of the particle (where I've called the height of the pivot y = 0). Show that the total energy E = K(t) + U(t) is a constant, independent of time.

3



5 For a pendulum that's released from rest from a small angle θ_0 , we saw that the period is $T = 2\pi/\Omega$, where $\Omega = \sqrt{g/l}$ is the natural frequency. Show that the exact period—not assuming θ_0 is small—may be expressed as

$$T = \frac{2\sqrt{2}}{\Omega} \int_0^{\theta_0} \frac{\mathrm{d}\theta}{\sqrt{\cos\theta - \cos\theta_0}}$$

and show that this reduces to $2\pi/\Omega$ when θ_0 is small. The period for small angles was independent of θ_0 ; is the same true for large θ_0 's? Hints: Use energy conservation to solve for the angular velocity $\dot{\theta}$. Then use the identity $\frac{d\theta}{\dot{\theta}} = dt$ and integrate both sides over one full oscillation. The right-hand-side is the period, and the left-hand-side is what you're looking for.